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I. INTRODUCTION

Interest in generalized transport equations incorporating
memory, nonlocal, and nonlinear effects has fostered the ex-
ploitation of the form of the second law of thermo-
dynamics.1–3 For instance, compatibility of generalized equa-
tions with the second law often requires the use of general-
ized entropies going beyond the local-equilibrium
entropy.1,4,5 On the other side, some well-known methods for
the exploitation of the second law, as the classical Liu
method,6,7 must also be generalized to incorporate different
restrictions consistent with the higher order of transport
equations.8 Here, we will deal with weakly nonlocal effects
in heat transport, a topic of much interest in small systems,
where small temperature differences divided by a small-scale
length may lead to very high temperature gradients.9 Further-
more, it is known that there is a finite build-up time for the
appearance of a thermal current, after that a temperature gra-
dient is suddenly clamped, of the order of magnitude of some
fractions of microseconds.10,11 Though this value may seem
small, it may be relevant for microdevices working at high
frequencies in computers.

Of course, second sound and other related phenomena
cannot be described by the classical Fourier equation since it
leads to infinite speed of propagation for thermal
disturbances,12 and therefore more general heat transport
equations must be looked for.4,5,10,11 In a series of recent
papers,13–15 a thermodynamic description of relaxational heat
transfer based on the so-called semiempirical temperature
scale has been employed. The essential idea of this approach
is to assume that the heat flux is given by

q = − � � � , �1�

with � as a suitable function of thermodynamic state vari-
ables representing the thermal conductivity and � a semi-
empirical temperature.

According to Fourier law, Eq. �1� preserves the assump-
tion that the heat flux should be in the inverted direction of
the gradient of a potential function, but in contrast to it, � is
a dynamical nonequilibrium temperature which differs from

thermodynamic absolute temperature �. The semiempirical
temperature � is related to the absolute one by a kinetic
equation of the form

�̇ = −
1

�
�� − �� , �2�

where � is a relaxation time characterizing the approach of �
toward �. In some occasions, � has been also called a dy-
namical temperature because its difference with the thermo-
dynamic temperature � has a dynamical origin according to
Eq. �2�. By design, at equilibrium, � is a suitable regular
function of local-equilibrium temperature T. Conditions un-
der which � reduces to T are shown in Refs. 16 and 17. In
Sec. II the differences among �, �, ant T will be further
discussed and clarified.

When Eq. �1� is combined with Eq. �2�, if the relaxation
time � and the thermal conductivity � are supposed to be
constant, one obtains

�q̇ + q = − � � � , �3�

which is the well-known Maxwell-Cattaneo equation,1,4,5,12

leading to a finite speed for thermal signals and to the exis-
tence of a propagative temperature wave known as second
sound.

The aim of the present paper is twofold: �1� to revisit the
description of Eq. �3� in terms of a dynamical semiempirical
temperature and its gradient on purely thermodynamic
grounds in order to gain further insight on the thermody-
namic aspects of nonlocal terms in transport equation and �2�
to apply the theory to describe the effects of a nonvanishing
steady heat flux on the propagation of second sound. This
may be of practical interest for the analysis of the speed of
signals in nonequilibrium steady states. These topics are of
much interest in the intermediate regime between diffusive
and ballistic heat transports, which is one of the hot topics in
current transport theory because of its implications in nano-
technology.
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In more detail, in Sec. II we show how it is possible to
define a semiempirical temperature � by revisiting the clas-
sical Cattaneo approach12 to the problem of finite speed of
propagation of thermal disturbances.13 We also point out the
experimental conditions under which the heat conduction
law �1� is true. In Sec. III we consider a rigid body for which
the constitutive variables are the specific internal energy e
and the semiempirical temperature �, together with their gra-
dients �e and ��, introduced in order to describe nonlocal
effects which are lacking in Eq. �2�.

Section IV explores the generalized heat transport model
in the framework of weakly nonlocal extended thermody-
namics. After having exploited the second law of thermody-
namics by applying an extended Liu procedure,8 we discuss
the consequent thermodynamic restrictions leading to a non-
local entropy function and point out the conditions under
which hyperbolic heat transport can be found.

In Sec. V, for a one-dimensional case, we investigate the
compatibility of the introduced form of entropy function
with the principle of maximum entropy at equilibrium states.
Furthermore, conditions for the convexity of entropy
functions4,5,18 outside the equilibrium state are discussed, and
their connections with the stability of nonequilibrium steady
states are pointed out. This section is specially interesting for
nonlinear heat transfer, as some of the stability conditions
may be related to nonlinear contributions to a generalized
thermal conductivity.

Section VI is devoted to compare the results of this paper
both with the previous results obtained in the extended irre-
versible thermodynamics �EIT� �Refs. 1 and 4� and with the
Onsager approach,19,20 while in Sec. VII concluding remarks
together with possible further developments are presented.

II. DYNAMICAL, NONEQUILIBRIUM, AND LOCAL-
EQUILIBRIUM TEMPERATURE

Classical irreversible thermodynamics lays on the so-
called local-equilibrium hypothesis,21 according to which it
is assumed that the concept of entropy, which is well defined
for processes close to the equilibrium, does not need a refor-
mulation out of equilibrium, as it can be naturally extended,
locally, to nonhomogeneous nonequilibrium situations. If the
hypothesis of local equilibrium is relaxed, then one is faced
with the problem of defining entropy in nonequilibrium con-
ditions. One of the possible ways for circumventing the
problem is to consider the entropy as a primitive quantity.22

In any case, once a constitutive equation for the entropy is
given, the thermodynamic absolute temperature � can be ob-
tained by the thermodynamic restriction,23

�−1 =
�s

�e
, �4�

with s as the specific entropy and e as the specific internal
energy. On the other hand, beside equilibrium quantities, s
contains nonequilibrium variables too, such as internal vari-
ables in rational thermodynamics24 or dissipative fluxes in
extended thermodynamics.1,4,5 Hence, we are led to the natu-
ral conclusion that the function �, as defined by Eq. �4�, is a
truly nonequilibrium quantity. Furthermore, the local-

equilibrium temperature T can be obtained from the right-
hand side of Eq. �4� by letting the nonequilibrium variables
vanish. For instance, in extended irreversible thermodynam-
ics, the entropy of rigid heat conductors takes the form25

s�e;q� = seq�e� −
�

2�T2q · q , �5�

where seq�e� is the local-equilibrium entropy, while � and �
are the heat conductivity and the relaxation time, respec-
tively. Similar expressions can be derived in rational
thermodynamics.24,26,27

A further problem arising in nonequilibrium thermody-
namics and involving the physical properties of � is the in-
finite speed of propagation of thermal disturbances whenever
the classical proportionality law between heat flux and gra-
dient of temperature is assumed to hold.12 In fact, let us
consider a rigid heat conductor, and let us suppose that its
thermodynamic state space is spanned by the thermodynamic
absolute temperature � together with its gradient. In the ab-
sence of heat sources, the local balance of energy reads

ė + qi,k
�ik = 0, �6�

where qi, with i= �1,2 ,3�, is the ith component of the heat
flux vector2,3 and �ik=�ki is the Kronecker symbol. Now and
in what follows, Einstein’s convention of summation over
repeated indices will be used. Moreover, the subscript �,k�
denotes the partial derivatives with respect to the coordinate
xk, and a superposed dot stands for the Lagrangian time de-
rivative.

By postulating the linear constitutive equations

e = cv�, qi = − ��,i �7�

once the specific heat cv and the thermal conductivity � are
supposed to be constant, from Eq. �6� we obtain the classical
diffusion equation,

�̇ =
�

cv
�,ii. �8�

Let us consider now the following initial value problem:

�̇ =
�

cv

�2�

�x2 ,

��x � 0;0� = 0, ��0;0� = 1 �9�

for a semi-infinite wire represented by the non-negative real
axis x�0. The fundamental solution of Eq. �9� is28

��x;t� =
1

2�	�t

cv

e−x2/4��/cv�t. �10�

From Eq. �10� it follows that ��x̄ ; t�
0 for arbitrarily
small t and for x̄ as large as we wish. Such a property is
known in the literature as paradox of infinite speed of propa-
gation of thermal disturbances.5,12 In order to remove such a
paradox, in 1948 Cattaneo12 proposed his celebrated evolu-
tion �Eq. �3�� for the heat flux. From Eqs. �3� and �6� it
follows

CIMMELLI, SELLITTO, AND JOU PHYSICAL REVIEW B 79, 014303 �2009�

014303-2



��̈ + �̇ =
�

cv
�,ii, �11�

which is the well-known telegraphic equation for the evolu-
tion of the temperature.12 For the semi-infinite wire consid-
ered above, it reduces to

��̈ + �̇ =
�

cv

�2�

�x2 , �12�

allowing the propagation of temperature pulses with finite
speed

U0 =� �

�cv
.

Nevertheless, Cattaneo’s proposal �3� cannot be consid-
ered as an exhaustive solution of the problem because of the
following considerations: �i� the compatibility of Eq. �3� with
the basic principles of continuum thermodynamics must be
proved and �ii� if the material functions �, �, and cv depend
on the temperature,29 the applied procedure could no longer
give rise to a hyperbolic equation. In literature one can find
several different models which have been designed to be in
accordance with nonequilibrium thermodynamics and still
leading to Eq. �3�.10,30,31

As an example, let us mention the approach of extended
irreversible thermodynamics.1,4 In such a theory the state
space of rigid heat conductors is spanned by the internal
energy e, ruled by Eq. �6�, by the heat flux q, and by the flux
of heat flux Q. Both the dissipative fluxes q and Q are gov-
erned by the following balance laws:

�q̇i + Qij,j
= �i, �13�

�1Q̇ij + Pijk,k
= �ij , �14�

where P is the flux of Q, � and � are the productions of q
and Q, respectively, while �1 is a relaxation time. The previ-
ous system is closed by assigning suitable constitutive equa-
tions for the flux P and for the productions � and � as
functions of the set of thermodynamic variables �e ;q ;Q�.
For regular solutions, one can consider the case in which �1
is negligible, and so the divergence of Q can be calculated
by Eq. �14� and substituted into Eq. �13�. That way, a general
governing equation for q, reducing to Eq. �3� in particular
cases, can be obtained.

A different approach, starting from Cattaneo’s original
derivation12 of Eq. �3�, lays on the definition of a new dy-
namical temperature.13 Let us give below a short sketch of
this approach, namely, the definition of � and its main prop-
erties �see Ref. 13 for more detail�. To this end let us con-
sider a gas in macroscopic mechanical equilibrium and let G
denote the average of the kinetic energy of the molecules.
Moreover, let us consider a steady state, in which G is inde-
pendent of time and constant on the family of planes or-
thogonal to a given direction r. Then, G can be supposed to
depend on the position x of the points of r only. Under such
a hypothesis, it can be easily proved12 that the net flux of G
across the generic plane at x is

q = �
0


 − �cc

3

�G

�x
dNc, �15�

where c denotes the speed of the molecules, �c is their mean-
free path, while dNc is the number of molecules whose ve-
locity belongs to the interval �c ;c+dc�. On the other hand,
from the relation G= 3

2kB�, with kB as the Boltzmann con-
stant, we easily get from Eq. �15� the classical Fourier law,

q = − �
��

�x
, �16�

with the heat conductivity � given by

� = �
0


 �cckB

2
dNc. �17�

If we go beyond the stationary state, then G has to be
considered to depend on space and time. A different flux of
G can now be carried out by expanding G up to the second
order. In such a case

q = �
0


 	− �cc

3

�G

�x
+

lc

3

�2G

�x � t

dNc, �18�

with lc denoting the mean square of the mean-free path of the
molecules.12 Then, one can write

q = − �
��

�x
+ �

�2�

�x � t
, �19�

with

� = �
0


 lckB

2
dNc. �20�

Now, let us define the dynamical temperature13

� = � − ��̇ , �21�

where �= �
� is a small relaxation time whose order of mag-

nitude in some cases, such as second-sound propagation at
low temperature, is in the interval �10−12 s ; 10−9 s�.29 From
the physical point of view � is different from �, since it
contains a frictional term related to the time rate of �. Such a
term introduces hyperbolicity since it reduces the speed of
propagation of � through the gas.

In order to obtain the evolution equation for �, let us
derive Eq. �21� with respect to time. This yields

�̇ = �̇ − ��̈ . �22�

Then, we calculate �̇ from Eq. �21� and substitute it into
Eq. �22�. That way, we are led to

��̇ = � − � − �2�̈ . �23�

Finally, if we consider only regular solutions of Eq. �23�,
then the smallness of � ensures that we can neglect the last
term at the right-hand side of Eq. �23�, getting so

��̇ + � = � . �24�
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From the mathematical point of view we see that � is
related to � by a linear differential equation, needing suitable
initial conditions to be solved. More generally, we can allow
� to reduce to a function of � at the equilibrium, which is
tantamount to measure � in a different scale. To this end we
can generalize Eq. �24� as follows:

�̇ = f��;�� , �25�

where the form of f can be determined by second-sound
measurements.14

It is worth observing that the equilibrium of � �i.e., �̇
=0� should not be confused with the thermodynamic equilib-
rium of the system. When � is in equilibrium, it reduces to a
function of the nonequilibrium absolute temperature � and
can be determined analytically as the solution of

f��;�� = 0. �26�

According to the terminology of classical irreversible
thermodynamics, � can be regarded as an internal state
variable.32 In a sense, its definition is analytical since it is
given by Eq. �25�. However, such an equation can be solved
only if the form of f and the initial condition are known, and
such a knowledge requires suitable experiments. These con-
siderations motivated the name of semiempirical temperature
for �.13 From the operational point of view, � can be con-
sidered to be in equilibrium at a characteristic time scale
with respect to which � is negligible.

From relation �19� we get the Fourier-type heat conduc-
tion law,

q = − �
��

�x
. �27�

Finally, due to Eqs. �24� and �27�, the local balance of
energy �6� yields for � the telegraphic equation,

��̈ + �̇ =
k

cv

�2�

�x2 , �28�

leading to finite speeds of propagation of thermal distur-
bances. A different situation arises if we generalize Eq. �27�
by assuming that q depends not only on both temperatures
but also on both gradients, namely,

q = − �1
��

�x
− �

��

�x
. �29�

We will show in Sec. VI that the expression above follows
by the Onsager approach to nonequilibrium thermo-
dynamics.21 Due to the presence of the gradient of �, Eq.
�29� leads to a parabolic system.33,34 However it is capable to
reproduce the hyperbolic behavior if �1 is negligible. In or-
der to illustrate in more detail the experimental conditions
under which this can happen, let us summarize the most
important properties of heat conduction in solids near abso-
lute zero. From the microscopic point of view this phenom-
enon can be modeled through the phonon gas
hydrodynamics.35,36 In a solid crystal at low temperature the
phonons form a rarefied gas, whose kinetic equation can be
derived similarly to that of an ordinary gas. Moving through

the crystal lattice they undergo two different types of colli-
sions: �i� normal �N� collisions, which conserve the phonon
momentum, and �ii� resistive �R� collisions, in which the
phonon momentum is not conserved.

The frequencies �N and �R of normal and resistive colli-
sions, respectively, determine the characteristic relaxation
times �N= 1

�N
and �R= 1

�R
. Non-Fourier diffusive heat transport

takes over when �R tends to infinity, and hence �R= 1
�R

tends
to zero. If instead �N= 1

�N
tends to zero, propagation of heat

waves may occur. If both relaxation times are not negligible,
one obtains the so-called diffusive-hyperbolic behavior, in
which the regularization of the profile of the thermal pulses
and the transition to the diffusive regime can be observed.
Finally, the Fourier regime is restored if both relaxation
times vanish.

According to the symbology of the present paper, �R
should be identified with �. Moreover, the considerations
above suggest that �1 should be expressed as a function of
�N. By assuming a linear dependency, namely, �1=��N, with
� as a suitable constant, then we get

q = − ��N
��

�x
− �

��

�x
. �30�

The hyperbolic behavior described by the constitutive Eq.
�27� takes place when ��0 and �N=0; if instead both relax-
ation times are not negligible, one obtains the diffusive-
hyperbolic behavior.33,34 Finally, the Fourier diffusive regime
is recovered as both relaxation times approach zero.

Let us close this section by summarizing the results
above. We have defined the following three different tem-
peratures: �1� the local-equilibrium absolute temperature T,
which can be defined through the second law of thermody-
namics in homogeneous equilibrium situations as 1

T =
�seq

�e ; �2�
the nonequilibrium absolute temperature �, defined by Eq.
�4�, once a suitable constitutive equation for the nonequilib-
rium entropy s has been achieved. Since s is different from
seq �see, for instance, Eq. �5��, � will differ from T except at
equilibrium; and �3� the semiempirical dynamical tempera-
ture � governed by the ordinary differential Eq. �25�, which
is different from � at time scales comparable with the order
of magnitude of � but reduces to a function of � at time
scales at which � is negligible.

Here we will be interested in fast phenomena, of time
scales smaller than � �for which � is different from ��, and in
the presence of high fluxes �for which � is different from T�.
In equilibrium, �, �, and T become identical but in fast and
far-from equilibrium systems they differ from each other. In
what follows we look for a generalization of Eq. �2� under
the assumption of non-negligible relaxation time.

III. BALANCE EQUATIONS AND ENTROPY INEQUALITY

Let us consider a rigid body whose thermodynamic state
space is spanned by the specific internal energy e, the semi-
empirical temperature �, and their first gradients �e and ��.
The considerations developed in Sec. II suggest that in an
equilibrium system, where the internal energy e is a function
of the thermodynamic local-equilibrium absolute tempera-
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ture T, the use of both e and � would be redundant. How-
ever, out of equilibrium, where the internal energy e is not
distributed as in equilibrium, � is a truly independent quan-
tity and not redundant with e. Furthermore, it has its own
evolution equation, namely, Eq. �2� or more general versions.

The presence of the gradients of basic variables in the
thermodynamic state space is introduced in view of a weakly
nonlocal description. The thermodynamic analysis of such a
model, when instead of � the heat flux q is used as an addi-
tional independent variable, was developed by Lebon et al.9

by applying the standard Liu procedure.7

According to the chain rule, the local balance of the spe-
cific internal energy reads

ė +
�qi

�e
e,i +

�qi

��
�,i +

�qi

�e,k
e,ki +

�qi

��,k
�,ki = r , �31�

with r as the specific-heat supply. As a generalization of Eq.
�2� we suppose

�̇ = f�e;�;e,k;�,k� , �32�

where f is a regular function of the indicated arguments,
whose form must be determined through thermodynamic re-
strictions. Nonlocal effects appear through the gradients of e
and � in the evolution Eq. �32�.

The equations characterizing the process must be re-
stricted by the second law of thermodynamics, which takes
the local form

�s

�e
ė +

�s

��
�̇ +

�s

�e,i
ė,i +

�s

��,i
�̇,i +

��i
�s�

�e
e,i +

��i
�s�

��
�,i

+
��i

�s�

�e,k
e,ki +

��i
�s�

��,k
�,ki � ��s�, �33�

where s denotes the specific entropy s�e ;� ;e,k ;�,k�, ��s� is
the entropy supply, and �i

�s� is the ith component of the
entropy flux.

One of the basic postulates of rational thermodynamics23

is that the entropy flux is proportional to the heat flux,
namely,

�i
�s� =

1

�
qi, �34�

whereas the nonequilibrium thermodynamic temperature is
described, as we already observed in Sec. II, by the function

�−1�e;�;e,k;�,k� =
�s

�e
. �35�

Assumption �34� has been found to be appropriate for a
very large class of phenomena, although it fails in describing
the entropy flux in mixtures, and in general, in all those
situations in which a diffusion of matter takes place. As a
possible remedy, Müller37,38 proposed his celebrated entropy
extra flux k, accounting for the additional flux due to matter
diffusion. Recently, some generalizations of Müller’s pro-
posal have been derived by other authors, either in the frame-
work of classical irreversible thermodynamics39,40 or in the
realm of extended irreversible thermodynamics.9,41 All these

generalizations contain Eq. �34� as a particular case. On the
other hand, for the systems considered in the present paper
�dielectric crystals at low temperature or nanodevices� the
thermal effects are predominant so that Eq. �34� can be con-
sidered as a good approximation of the entropy flux.

As far as the form of the heat flux is concerned, since we
are interested to study only the hyperbolic behavior, we sup-
pose that Eq. �1� represents a suitable approximation of the
heat flux, namely,

qi = − ��e;���,i. �36�

Due to constitutive relation �34�, inequality �33� can be
also rewritten as

�	 �s

�e
ė +

�s

��
�̇ +

�s

�e,i
ė,i +

�s

��,i
�̇,i
 +

�qi

�e
e,i +

�qi

��
�,i +

�qi

�e,k
e,ki

+
�qi

��,k
�,ki −

1

�
qi	 ��i

�e
e,i +

��i

��
�,i +

��i

�e,k
e,ki +

��i

��,k
�,ki


� ���s�. �37�

IV. SEMIEMPIRICAL TEMPERATURE AND NONLOCAL
HEAT TRANSPORT

In the present section we explore which kind of nonlocal
effects appear in the introduced model �32� for the evolution
of �. Moreover, we deal with generalized heat transport
models inside the framework of weakly nonlocal extended
thermodynamics1 to illustrate and understand how the dy-
namics of the semiempirical temperature, reflected in Eq.
�32�, is connected with nonlocal effects in heat transport.

In order to investigate the compatibility of this equation
with the second law of thermodynamics �33�, we apply an
extended Liu procedure.8 In fact, in weakly nonlocal ex-
tended thermodynamics the entropy function may present
some physical properties �i.e., entropy must be nonlocal�
which cannot be evidenced by the direct application of the
classical Liu procedure.7 Thus, it is important to explore
more general procedures enabling to grasp subtle aspects
originating from nonlocality.

The extended Liu procedure consists of forming a general
inequality by adding to the entropy inequality not only a
linear combination of the governing equations of the wanted
fields but also of their extensions up to the order of the spa-
tial derivatives entering the constitutive equations. The fac-
tors multiplying the field equations and their extensions are
Lagrange multipliers, whose physical role will be explored.
Thermodynamic restrictions on the constitutive functions are
obtained by an analytical procedure which starts by the ob-
servation that this inequality is linear in the highest deriva-
tives of the wanted fields, which are considered to be com-
pletely arbitrary. Thus, we will also take into account the
gradient extension of Eq. �31�, reading

ė,i + 	 �2qk

�e2 e,i +
�2qk

�� � e
�,i +

�2qk

�e,j � e
e,ji +

�2qk

��,j � e
�,ji
e,k

+
�qk

�e
e,ki + 	 �2qk

�e � �
e,i +

�2qk

��2 �,i +
�2qk

�e,j � �
e,ji

+
�2qk

��,j � �
�,ji
�,k +

�qk

��
�,ki + 	 �2qk

�e � e,j
e,i +

�2qk

�� � e,j
�,i
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+
�2qk

�e,z � e,j
e,zi +

�2qk

��,z � e,j
�,zi
e,ki +

�qk

�e,j
e,kji

+ 	 �2qk

�e � �,j
e,i +

�2qk

�� � �,j
�,i +

�2qk

�e,z � �,j
e,zi

+
�2qk

��,z � �,j
�,zi
�,ki +

�qk

�e,j
�,kji +

�r

�e
e,i +

�r

��
�,i

+
�r

�e,k
e,ki +

�r

��,k
�,ki = 0, �38�

together with the gradient extension of the evolution Eq. �32�
for �, namely,

�̇,i =
� f

�e
e,i +

� f

��
�,i +

� f

�e,k
e,ki +

� f

��,k
�,ki. �39�

Let us note that in writing the balances above we have
considered the general case in which the heat flux depends
on the whole set of state variables. That way the extension of
the classical Liu procedure will result clearer.

A. Hyperbolic heat transport

In order to take into account the second law of thermody-
namics, we substitute into Eq. �33� constraints �31� and �32�,
together with their gradient extensions �38� and �39�. It
yields

ṡ + �i,k
�s��ik − ��s� − ��e��ė + qi,k

�ik − r� − ������̇ − f�

− �i
�e��ė,i + qk,ji

� jk − r,i� − �i
�����̇,i − f ,i� � 0, �40�

where, for the sake of simplicity, we adopted a compact no-
tation, denoting with qk,ki

the ith component of ��� ·q�.
In the extended Liu inequality �40� the terms ��e�, ����,

�i
�e�, and �i

��� are suitable Lagrange multipliers which allow
us to incorporate the corresponding restrictions coming from
Eqs. �31�, �32�, �38�, and �39�. The introduction of the gra-
dient extensions by means of �i

�e� and �i
��� represents a dif-

ferent approach to the exploitation of second law8 since the
standard point of view would have been to impose only the
evolution equations of state space variables through ��e� and
����.7 The gradient extensions are specially relevant in the
context of nonlocal effects, as it will be seen below.

According to Ref. 8 and due to Eq. �36�, by inequality
�40� the following set of thermodynamic restrictions can be
derived:

�s

�e
= ��e�, �41�

�s

�e,i
= �i

�e�, �42�

�s

��,i
= �i

���, �43�

1

�2

��

�e,k
qi − �i

��� � f

�e,k
+ �i

�e�	 �qk

�e
−

�r

�e,k

 = 0, �44�

1

�2

��

��,k
qi − �i

��� � f

��,k
+ �i

�e�	 �qk

��
−

�r

��,k

 + �i

�e�	 �2qj

��,k � e
e,j

+
�2qj

��,k � �
�,j
 + � j

�e�	 �2qi

�e � �,k
e,j +

�2qj

�� � �,k
�,j
 = 0,

�45�

�i
�e� �qj

��,k
= 0. �46�

Now, let us focus for a while our attention on relation
�46�. It is satisfied only in the trivial case, namely, either

�i
�e� = 0 �47�

or

�qj

��,k
= 0. �48�

Due to the constitutive assumption �36�, it follows that
Eq. �47� must hold. Furthermore, taking into account Eq.
�46�, the thermodynamic restrictions �44� and �45� yield

� f

�e,k
=

1

3�i
���

1

�2qi
��

�e,k
, �49�

� f

��,k
=

1

3�i
���

1

�2qi
��

��,k
, �50�

�s

��
f + 	�i

��� � f

�e
−

1

�2qi
��

�e

e,i + 	�i

��� � f

��
−

1

�2qi
��

��

�,i � 0,

�51�

if the classical assumption of rational thermodynamics ��s�

= �s
�er holds.
From relations �41�–�43� and �46�, it turns out that the

specific entropy s is nonlocal with respect to semiempirical
temperature � but not with respect to the specific internal
energy e. Thus, a suitable form of specific entropy up to the
second order in �,i may be

s�e;�;�,k� = s0�e;�� −
1

2
s��e;���,i�,i, �52�

where s0�e ;�� is the part of the entropy which does not de-
pend on the gradient of �, while s��e ;�� is a regular scalar
function. This term vanishes at equilibrium, where �,i=0.
Equation �52� is in accordance with the representation theo-
rems of isotropic scalar functions, and moreover, it ensures
that the principle of maximum entropy at the equilibrium is
satisfied,42 as we will see below when, in pointing out the
stability conditions, restrictions on the admissible values of
s��e ;�� will arise.

Along with the thermodynamic restriction �43�, form �52�
yields

�i
��� = − s��e;���,i. �53�

Note that without the gradient extension proposed in Ref.
8, the entropy would have been predicted to be independent
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of �,i. In Sec. IV B we will explore the physical conse-
quences of s��e ;��.

If one identifies the nonequilibrium thermodynamic tem-
perature with Eq. �35�, once relation �52� holds, it is easy to
see that �=��e ;� ;�,i�, and then from Eq. �49� it follows that
the evolution equation for the dynamical semiempirical tem-
perature � is not dependent on the gradient of the internal
energy e, i.e., f = f�e ;� ;�,i�. Thus, from Eq. �50�, with
straightforward calculations and integrating with respect to
�,i, we finally get

f�e;�;�,k� = f0�e;�� +
1

2
f1�e;���,i�,i, �54�

where f0 is a suitable function of the indicated arguments and

f1�e;�� =
�

s�

�s�

�e
. �55�

Looking at relation �2�, between the semiempirical tem-
perature and the absolute one, and definition �32� of the func-
tion f , we may suppose

f0�e;�� = −
1

�
�� − �� . �56�

In writing Eq. �56� we have also taken into account that
the specific internal energy e and the absolute temperature �
are related by means of the specific heat cv, as cv= �e

�� .

B. Second sound in the presence of a heat flux

Here, we will study the consequences of the new weakly
nonlocal term appearing in Eq. �54�, which is the main dif-
ference between Eqs. �2� and �54�. Taking into account rela-
tions �54�–�56�, for constant material functions, gradient ex-
tension �39� of the evolution equation for � leads to

�̇,i = −
1

�
��,i − �,i� + f1�,k�,ki, �57�

where, as in what follows in this section, we have neglected
the third-order terms with respect to e,i and �,i. Combining
Eq. �57� with the constitutive assumption �36�, we obtain

�q̇i + qi = − ��,i −
�f1

�
qkqk,i

. �58�

The evolution Eq. �58� for the heat flux qi reduces to the
Maxwell-Cattaneo Eq. �3� when f1�e ;��=0. We want to
stress that in the classical Liu procedure for the exploitation
of the second law,7 the entropy would have been predicted to
be independent of �,i, namely, s��e ;��=0, and thus
f1�e ;��=0.

For the sake of simplicity, now let us restrict ourselves to
the problem of heat transport in a one-dimensional rigid
body. For a high-frequency perturbation � around a steady
state under a heat flux, from Eq. �58� it follows that

�q̇x +
1

�
�qx = −

�

�
����,x −

f1

�
qx0

��qx�,x, �59�

where qx0
=−��0,x

and �0 are, respectively, the heat flux and
the thermodynamic absolute temperature at the steady state,

and x denotes the longitudinal spatial coordinate.
Due to the balance equation for the internal energy �31�,

with r=0, and deriving Eq. �59� with respect to the space,
straightforward calculations show that

ë +
1

�
ė −

1

�

�

cv
e,xx +

f1

�
qx0

ė,x = 0. �60�

Hyperbolic Eq. �60� governs the propagation of the pulses
along the heat flux in a rigid heat conducting body. It is more
general than the telegraph equation �28� derived in Sec. II,
and it leads to the results

U+ = U0���2 + 1 − �� , �61�

for the speeds of propagation of the pulses in the positive
direction, namely, in the same direction as the heat flux, and

U− = U0���2 + 1 + �� , �62�

in the opposite direction, with U0=� �
�cv

as the speed of
propagation of thermal pulses in an equilibrium reference

state, and �= 1
2

f1

�

qx0

U0
.

From Eqs. �61� and �62� it follows that a small heat pulse
will travel with different velocity in the direction of the heat
flow than in the opposite direction. Taking into account Eq.
�55�, one may obtain

�U = U− − U+ = 2U0� =
1

s�

�s�

�e
qx0

. �63�

It is worth observing that the sign of �U is strictly con-
nected with that of 1

s�

�s�

�e .
Equation �63� is a thermodynamic prediction of a relation

between the speeds of thermal pulses in equilibrium, which
give information on �, and the speeds of thermal pulses un-
der a heat flux. A positive value of �U is usual in the case of
phonon hydrodynamics.35

Now we want to compare Eq. �63� with two other ap-
proaches, which have also dealt with second-sound propaga-
tion in the presence of heat flux. Let us start with the ap-
proach proposed by Coleman et al.43 in 1982, which also
describes a different speed of propagation toward or back-
ward an average nonvanishing heat flux. In Ref. 43 a ther-
modynamic state space spanned by the absolute temperature
� and the heat flux qi is supposed. If one neglects the terms
quadratic with respect to the heat flux, for the difference of
both speeds of propagation �U=U−−U+, the following rela-
tion holds:

�U = U− − U+ =
2a�T�
cvz�T�

qx0
, �64�

with z�T�= ��T�
��T� and a�T�=− T2

2
�z
�T . Experimental analysis of

second sound in solids shows that �z
�T �0,43 and thus, it fol-

lows that if qx0

0 in the direction of increasing x, then �U−�

exceeds �U+�. Thus, the heat pulse propagating in a body
conducting heat will travel more slowly in the direction of
heat flow than in the opposite direction.

In Ref. 44 the same problem was studied but in the frame-
work of extended irreversible thermodynamics, i.e., starting
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from a thermodynamic state space spanned by the internal
energy e and the heat flux qi, and combining the energy
balance law Eq. �31�, the Maxwell-Cattaneo equation �3�,
and the generalized equation of state for the thermodynamic
absolute temperature �,4,44

1

�
=

1

T
−

1

2

�

�e
	 �

�T2
qiqi. �65�

That way, the following hyperbolic equation is recovered:

Aë + Bė,x − e,xx = 0, �66�

with A=
cv�

� and B=2A� �T2

� � �
�e � �

�T2 �qx0
.

Equation �66� leads �U to the result

�U = U− − U+ = −
�T2

�

�

�e
	 �

�T2
qx0
, �67�

and so a wave traveling more slowly in the same direction of
heat pulse than that in the opposite direction is recovered
provided that �

�e � �

�T2 ��0. In Refs. 4 and 44 it is shown in a
microscopic model for a phonon gas that this inequality is
satisfied. It is easy to see that Eqs. �64� and �67� are equiva-
lent, and they are also equivalent with Eq. �63� if s� is iden-
tified as s�= ��

T2 . The thermodynamic consistency of this last
assumption will be shown in Sec. VI A, where our approach
will be compared with that of extended irreversible
thermodynamics.1,4 Thus, it is interesting to see that this phe-
nomenology would have been lost if the usual Liu technique

had been used without the extensions included in Eq. �40�.

V. ENTROPY AND NONLINEAR HEAT TRANSPORT

The requirement that entropy is maximum at equilibrium
stable states imposes some restrictions on the equations of
state, which are useful to predict, for instance, the conditions
for phase transitions. Instead, out of equilibrium the general-
ized entropy provides another kind of restrictions, related to
the hyperbolic character of the evolution equations, and
which are also related to the second differential of the en-
tropy. Thus, the aims of the present section are both inferring
the compatibility conditions of Eq. �52� with the principle of
maximum entropy at equilibrium states and investigating its
compatibility with the condition of convexity of the entropy
function in nonequilibrium steady states.4,5,18

A. Equilibrium and steady states

For the sake of simplicity, we restrict ourselves to the
problem of heat transport in a one-dimensional rigid body. At
equilibrium states, we postulate the caloric equation of state

e = H��� , �68�

with H as a regular function.
In Sec. IV A we have obtained that the entropy should be

s=s�e ;� ;�,k�, and from Eq. �52� the matrix of the second-
order derivatives �2s may be written as

�2s = �
�2s0

�e2 −
1

2

�2s�

�e2 �,x
2 �2s0

�e � �
−

1

2

�2s�

�e � �
�,x

2 −
�s�

�e
�,x

�2s0

�� � e
−

1

2

�2s�

�� � e
�,x

2 �2s0

��2 −
1

2

�2s�

��2 �,x
2 −

�s�

��
�,x

−
�s�

�e
�,x −

�s�

��
�,x − s�

� , �69�

where x is the linear spatial coordinate. At the equilibrium
state, where �,x=0, matrix �69� yields

�2s�eq = � −
1

cv
	 1

T

2

−
1

cv

dH

d�
	 1

T

2

0

−
1

cv

dH

d�
	 1

T

2

−
1

cv
	 1

T

dH

d�

2

+
1

T

d2H

d�2 0

0 0 − s��eq

� .

�70�

The requirement that the entropy is maximum at equilib-
rium �for isolated systems� implies

cv 
 0, �71�

s��eq 
 0, �72�

d2H

d�2 � 0, �73�

1

cv

1

�3

d2H

d�2 � 0. �74�

It is easily seen that Eq. �74� is automatically fulfilled if
relations �71� and �73� hold. Thus, for a one-dimensional
rigid body conditions �71�–�73� are sufficient to have a maxi-
mum of entropy at equilibrium for hyperbolic heat transport,
provided that Eq. �52� is postulated.

Far-from equilibrium, simple calculations lead from Eq.
�69� to
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�2s = �
−

1

cv
	1

�

2 1

�

��

�e
−

��

��,x
	1

�

2

1

�

��

�e
−

�

�2 +
1

�

��

��

1

�

��

��,x

−
��

��,x
	1

�

2 1

�

��

��,x
− s�

� ,

�75�

where � denotes a regular function such that

�s

��
=

1

�
��e;�;�,x� . �76�

By design, � at equilibrium tends to
cv

T F�T�� dF
dT �−1, where

F�T�=� �eq. Furthermore, we suppose that the derivatives of
� with respect to the state variables are of the first order of
magnitude, and hence, approaching the stability of entropy
far-from equilibrium, all the terms which contain products of
these quantities will be neglected. Let us note that in matrix
�75�, both � and � depend on �,x.

The requirement that the entropy is a convex function
implies that matrix �75� must be negative definite. This
yields

cv 
 0, �77�

s��e;�� 
 0 ∀ �e;�� , �78�

��

��
�

�

�
∀ �e;�;�,x� , �79�

−
1

cv
	1

�

2

� 0 ∀ �e;�;�,x� , �80�

−
s�

cv
	�

�
−

��

��

 � 0 ∀ �e;�;�,x� . �81�

Again, it is not difficult to verify that conditions �80� and
�81� are automatically satisfied if Eqs. �77�–�79� are true.
Thus, we may conclude that conditions �77�–�79� are suffi-
cient to ensure that the entropy given by Eq. �52� is a convex
function.

B. Nonlinear thermal conductivity

As previously said, in matrix �75� the functions � and �
depend on �,x, and therefore it incorporates an implicit influ-
ence of the semiempirical temperature gradient. To make this
influence explicit, we will illustrate the analysis in the par-
ticular situation s=s�e ;�,x�. In this case, Eq. �69� reduces to

�2s = �−
1

cv
	 1

T

2

−
1

2

�2s�

�e2 �,x
2 −

�s�

�e
�,x

−
�s�

�e
�,x − s�

� . �82�

Two immediate stability conditions will be cv
0 and
s��e�
0, which are the same as in Eqs. �77� and �78�. An-

other condition, which explicitly exhibits the nonequilibrium
influence through the nonequilibrium parameter �,x, refers to
the positive sign of the complete determinant and is

1

cv
	 1

T

2

+
1

2

�2s�

�e2 �,x
2 
 0, �83�

where every derivatives of the function s��e� with respect to
the state variables are supposed to be of the first order of
magnitude. Relation �83� will be fulfilled if

− �,x
2 �

2

cv
	 1

T

2	 �2s�

�e2 
−1

, �84�

which represents a constraint on the admissible values of the
heat flux. A similar result has been obtained in Ref. 25. It is
worth observing that function � appearing in Eq. �1� cannot
be identified with the classical Fourier heat conductivity, al-
though it should reduce to such a function when � coincides
with T. In order to point out the relation between these two
material functions, let us define an effective conductivity �eff
as

qx = − �eff�,x, �85�

where � denotes the nonequilibrium absolute temperature.
Due to the constitutive Eq. �36�, �eff contains dynamical
terms which are capable to reproduce the hyperbolic regime.
The classical parabolic behavior is recovered when the non-
equilibrium temperature � reduces to the equilibrium tem-
perature T. In such a case �eff reduces to Fourier’s heat con-
ductivity.

On the other hand, following the ideas of Onsager’s linear
thermodynamics,42 let us write

qx = �	 �s

�e



,x

= �
 1

T
−

1

2

�s�

�e
�,x

2 �
,x

= −
�

T2
1 + T2cv

2

�2s�

�e2 �,x
2 ��,x,

�86�

with � as a positive phenomenological coefficient related to
the thermal conductivity. In deriving Eq. �86� we have ne-
glected the contribution of the second spatial derivatives of
�, which are related to the first spatial derivatives of the heat
flux, since we are looking for a form of Eq. �85� which is
capable to reproduce the hyperbolic regime, namely, a
Maxwell-Cattaneo-type equation. This is not guaranteed if
the first spatial derivatives of the heat flux q enter its evolu-
tion equation. The entropy rate of change in this case is

ṡ = 	 �s

�e

ė = − 	 �s

�e
qx


,x
+ qx	 �s

�e



,x
. �87�

The first term in the right-hand side of Eq. �87� is the
divergence of the entropy flux and the second one the en-
tropy production, which, in view of Eq. �86�, is simply ����

=�� �s
�e �,x�

�s
�e �,x. At the equilibrium, where �s

�e = 1
T , relation �86�

is simply the Fourier law, provided that the heat conductivity
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is given by �

T2 . From Eq. �86�, supposing �= �

T2 , we obtain an
effective nonlinear thermal conductivity which depends on
�,x,

�eff = �
1 + T2cv

2

�2s�

�e2 �,x
2 � . �88�

When
�2s�

�e2 �0, relation �88� implies a reduction in thermal
conductivity for higher temperature gradients. Such a reduc-
tion is indeed observed in far-from equilibrium
situations.45–50 However, for arbitrary values of �,x, the de-
crease in Eq. �88� would be too drastic, as it could lead to a
negative value for the effective thermal conductivity. This
would imply that internal energy tends to accumulate in a
point rather than being distributed in a homogeneous way.

However, if
�2s�

�e2 �0, i.e., �eff��, inequality �84� ensures the

positiveness of �eff. If, instead,
�2s�

�e2 
0, then �eff
�. Let us
note that in this case, Eq. �83� is fulfilled whatever the value
of �,x is, namely, there is no constraint on the admissible
values of the heat flux. Moreover, it follows from Eq. �88�
that �eff reduces to � at the equilibrium where �,x=0. Finally,
both � and �eff yield the Fourier heat conductivity if ���
�T.

Conductivity �88� is specially interesting from the per-
spective of nonlinear heat transport, as it depends on �,x

2 ,
which is a nonlinear and nonlocal term. A nonlocal and non-
linear heat conductivity arises in several situations involving
finite speed of propagation of thermal disturbances, such as
in radiative heat transfer or in plasma physics. In these phe-
nomena the heat flux cannot assume arbitrary values, but it is
bounded by a saturation value, of the order of the energy
times the maximum speed of propagation. The saturation ef-
fect implies a drastic reduction in the flux with respect to the
values predicted by Fourier law and can be interpreted by
introducing an effective thermal conductivity, depending
nonlinearly on the temperature gradient too. A typical form
of the heat flux is45–50

qx = −
�

�1 +
al2

�2 �,x
2

�,x, �89�

with l as the mean-free path and a is a numerical dimension-
less parameter.

In a small system of size L and submitted to a difference
in temperature ��, the temperature gradient will be of the
order of ��

L , and the second term under the square root in the
denominator of Eq. �89� will be of the order of a� l

L �2� ��
� �2.

For L� l, Eq. �89� reduces to Fourier law. In the ballistic
limit when l�L and recalling that the thermal conductivity is
�= 1

3�cvlv̄, with v̄ as the average value of the modulus of the
particle speeds, Eq. �89� yields for the modulus of the heat
flux qx= 1

3�a
�cv�v̄. This corresponds to the ballistic transport

of heat flux for high values of the gradient. Indeed, the maxi-
mum value of ��

L� , with ��=�2−�1 and �=
�2+�1

2 , will be
achieved when L is small and when �2��1 or �1��2, in
which case the average � will be of the order of the incre-
ment ��. It is logical to expect that for a given average

temperature, the maximum value of the heat flux will not be
arbitrarily high but bounded by the ballistic value in which
most of the particles cross the system without experiencing
collisions with other particles.

The presence of the mean-free path and the relevance of
the denominator in ballistic situations, which we have just
commented explicitly, outline the expected importance of
this nonlinear reduction in the thermal conductivity in nano-
systems smaller than the mean-free path.

In terms of �, the effective thermal conductivity appear-
ing in the equation above can be expressed as

�eff =
�

�1 +
al2

�2 �,x
2

. �90�

This describes a nonlinear reduction in thermal conduc-
tivity which does not become negative for any value of �,x. If
we perform an expansion of Eq. �90� around the equilibrium,
�i.e., �,x=0�, we see that Eq. �88� represents a second-order
approximation of Eq. �90� provided that

T2cv
�2s�

�e2 = −
al2

�2 . �91�

VI. COMPARISON WITH EIT APPROACH AND WITH
THE GENERALIZED ONSAGER FORMALISM

In this section we will compare our approach to two other
thermodynamic approaches: extended irreversible thermody-
namics �EIT�, incorporating nonlocal effects, and a generali-
zation of the Onsager version of nonequilibrium thermody-
namics.

In EIT,1,4,5 the fluxes �heat flux and higher order fluxes�
are used as independent variables, instead of �e and ��, and
they lead to relaxational equations with nonlinear contribu-
tions which generalize the Maxwell-Cattaneo Eq. �3�. Con-
cerning Onsager’s approach, it is in some aspects the oppo-
site way that we have explored: instead of starting from
some evolution equations and searching for the form of the
generalized entropy, it assumes a generalized entropy and
looks for the corresponding evolution equations satisfying
the requirement of a positive-definite entropy production.

A. EIT approach

EIT is a nonequilibrium thermodynamic theory where the
fluxes, rather than the gradients, are used as independent
variables to include nonlocal effects.1,4 In order to describe
nonlocal effects, in the framework of EIT it is assumed that
the entropy depends on the energy and the heat flux, and it is
shown that the generalized entropy compatible with the
Maxwell-Cattaneo equation has the form4,51

s�e;qi� = seq�e� −
�

2�T2qiqi. �92�

If the constitutive assumption �36� holds, then Eq. �92�
may be rewritten as s�e ;�,i�=seq�e�− ��

2T2 �,i�,i and it allows
to interpret the s� coefficient appearing in Eq. �52� as
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s��e;�� =
��

T2 . �93�

Let us point out that due to Eq. �93�, from Eq. �63� it
follows that a small heat pulse propagating in a rigid heat
conducting body will travel more slowly in the direction of
the heat flow than in the opposite direction according to
Refs. 43 and 44 as can been seen in Sec. IV B.

Furthermore, in EIT the relation between the thermody-
namic absolute temperature �, obtained from the relation
�−1= � �s

�e �, and the local-equilibrium one T, defined in terms
of the internal energy density, without reference to entropy, is
given by

� = T +
T2

2

�

�

�

�e
	 1

T2
qiqi �94�

if the relaxation time � and the effective thermal conductivity
� are constant.1,4

Let us observe that Eq. �94� is in accordance with the
generalized equation of state for the thermodynamic absolute
temperature �65�. Indeed, from Eq. �65� it follows that

� = T
1 −
T

2

�

�e
	 �

�T2
qiqi�−1

. �95�

Thus, performing an expansion of Eq. �95� around the
equilibrium state �i.e., qi=0�, up to the first-order one has

� = T
1 +
T

2

�

�e
	 �

�T2
qiqi� , �96�

and Eq. �94� may be recovered.
On the other hand, from Eq. �32�, due to relations

�54�–�56� and the constitutive assumption �36� we have �̇=
− 1

� ��−��+ 1
2 f1�,i�,i, and it follows that in the steady state,

i.e., �̇=0, the semiempirical temperature � will not become
equal to � but we will have, recalling Eq. �55�,

� = � +
�

2�

1

s�

�s�

�e
qiqi. �97�

It is easy to observe that, taking into account Eq. �93�,
relation �97� reduces to Eq. �94� once one takes into consid-
eration the different notations in Eqs. �94� and �97�, namely,
if one identifies T with � and � with �. Thus, the difference
between � and � gives another analogy between our formal-
ism and EIT. Note again that the fact that f1�0 is essential
for this analogy. However, in the present formalism the dy-
namical character of temperature plays a central role, which
is not so explicitly seen in EIT. Thus, the combination of
both theories may give a deeper insight into temperature.

B. Onsager’s formalism

We will now take the generalized entropy �52� as a start-
ing hypothesis, and we will look for the corresponding evo-
lution equation following from it in the framework of the
Onsagerian classical irreversible thermodynamics.21 By fo-
cusing our attention on hyperbolic heat transport, we will
suppose s=s�e ;�,i�. Thus, taking into account Eqs. �35� and

�53�, from the extended Gibbs equation we get

ṡ =
1

�
ė − s��,i�̇,i. �98�

If r=0, due to the local balance of internal energy �31�,
from Eq. �98� it follows that

ṡ + 	1

�
qi


,i
= −

1

�2qi�,i − s��,i�̇,i. �99�

According to Onsager theory,19–21 we take qi and �̇,i as
fluxes and − 1

�2 �,i and −s��,i as thermodynamic forces. Ex-
pressing the former one as linear combination of the latter,
we have

qi = −
L11

�2 �,i − L12s��,i, �100�

�̇,i = −
L21

�2 �,i − L22s��,i, �101�

where L11, L12, L21, and L22 are the phenomenological coef-
ficients. In fact, Eq. �101� may be seen as the gradient exten-
sion of the dynamical Eq. �2� for �, if the term L22s� is
interpreted as 1

� . The positiveness of entropy production re-
quires that

L11 
 0, �102�

L22 
 0, �103�

L11L22 − L12L21 � 0. �104�

Differentiating expression �100� with respect to time, in
the case of constant phenomenological coefficients, straight-
forward calculations yield

q̇i + L22s�qi = −
s�

�2 �L11L22 − L12L21��,i −
L11

�2 �̇,i, �105�

which is the double-lag heat transfer equation,11 exhibiting
relaxational effects both in the heat flux and in the tempera-
ture gradient.

From Onsager-Casimir point of view, the analysis of Eq.

�105� depends on the time-reversal parity assigned to �̇. If it
is assumed an odd variable with respect to time reversal, as
qi, then L12=L21. But then, due to Eq. �104�, L11 and L22 will
be necessarily different from zero. This implies that in Eq.

�105� the term
L11

�2 �̇,i cannot be eliminated. However, due to
the considerations of Sec. II, the Maxwell-Cattaneo equation
can be recovered at a time scale at which L11 is negligible. In
such a case, the semiempirical heat conduction law �1� fol-
lows from Eq. �100�, and this proves that heat conduction
theory developed in this paper is in accordance with Onsag-
er’s approach to nonequilibrium thermodynamics. Identifica-
tion of the terms in Eq. �105� leads to

L22s� =
1

�
, �106�

for the relaxation time and
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� =
L11L22 − L12L21

�2 , �107�

for the thermal conductivity.
If one takes L12=L21=0, then Eq. �105� may be written as

�q̇i + qi = − ��,i − ���̇,i, �108�

where now �=
L11

�2 . If L12=L21�0, from Eq. �105� instead one
has

�q̇i + qi = − ��,i − ����̇,i, �109�

where the thermal conductivity is given by Eq. �107� and

�� =
L11

�2 . �110�

VII. CONCLUDING REMARKS

In this paper we have revisited the nonlocal and the non-
linear heat transport in a rigid body in terms of a dynamical
semiempirical temperature �. Such an analysis is motivated
by the increasing importance of the application of general-
ized heat transport equations in nanotechnology,11,52–55 and
its results may have special interest for heat transport in min-
iaturized systems with internal degrees of freedom or for the
analysis of high-frequency short-wavelength perturbations.
The result we have studied, concerning the different speed of
propagation of thermal signals along or against the average
heat flux, indicates that perturbations of the hotter tempera-
ture or of the lower temperature in a nanosystem will not
propagate at the same speed inside the system. Furthermore,
the understanding of temperature in nonequilibrium states is
a fundamental topic and an active field of research,16 and
therefore the exploitation of the consequences of dynamical
temperatures in heat transport may be useful also in this
field.

Starting from a thermodynamic state space spanned by the
specific internal energy e, the semiempirical temperature �,
and their first gradients �e and ��, in the case of Eq. �32�,
which leads to an hyperbolic regime by the extended Liu
procedure,8 we found that the entropy density is nonlocal
only with respect to �, as given explicitly by Eq. �52�.56 In
particular, in Sec. IV B some physical consequences of this
contribution on the propagation of second sound in the pres-
ence of a heat flux have been pointed out.

We have emphasized the importance of the generalized
version of the Liu procedure for the exploitation of the sec-
ond law. Without this gradient extension, the effects explored
in this paper would vanish. However, they are consistent
with the result obtained, some years ago, from two different
versions of extended thermodynamics. This agreement em-
phasizes the physical interest of the nonlocal and nonlinear
terms considered in this paper.

The analysis of the hyperbolic regimes is based on purely
thermodynamic grounds. Furthermore, in order to give a
deeper insight to the dynamical semiempirical temperature
and the subsequent implications for the form of the entropy
and the transport equation for the heat flux, all the results
have been compared both with EIT and with the Onsager
formalism.

Finally, we feel that the analysis for nonlinear hyperbolic
heat transfer is specially interesting, as some of the stability
conditions may be related to nonlinear contributions to a
generalized thermal conductivity. In the future, nonlinear ef-
fects should be paid more attention. For instance, another
interesting aspect of propagation of heat pulses in the pres-
ence of a temperature gradient is related to the variation in
the speed U as a function of the temperature. From experi-
mental observation in crystals of NaF and of Bi at low
temperatures,26,43,57 it follows that �U

�� �0. This implies that if
a rectangular-shaped heat pulse propagates in the same direc-
tion of the temperature gradient, namely, in the opposite di-
rection of heat flux, the pulse becomes narrower and higher
because the frontal edge, being always at higher temperature
than the rear edge, has a lower velocity than the rear edge,
and the distance between them slowly decreases. This pro-
cess cannot last indefinitely, as it would lead to a singularity.
Thus, nonlinear effects in the propagation velocity would
have an increasing importance, and they should deserve
more attention in the future.
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